Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0281175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37036850

RESUMO

Lactococcus lactis subsp. lactis is a food bacterium that has been utilized for decades in food fermentation and the development of high-value industrial goods. Among these, nisin, which is produced by several strains of L. lactis subsp. lactis, plays a crucial role as a food bio-preservative. The gene expression for nisin synthesis was evaluated using qPCR analysis. Additionally, a series of re-transformations of the strain introducing multiple copies of the nisA and nisRK genes related to nisin production were developed. The simultaneous expression of nisA and nisZ genes was used to potentiate the effective inhibition of foodborne pathogens. Furthermore, qPCR analysis indicated that the nisA and nisRK genes were expressed at low levels in wild-type L. lactis subsp. lactis. After several re-transformations of the strain with the nisA and nisRK genes, a high expression of these genes was obtained, contributing to improved nisin production. Also, co-expression of the nisA and nisZ genes resulted in extremely effective antibacterial action. Hence, this study would provide an approach to enhancing nisin production during industrial processes and antimicrobial activity.


Assuntos
Lactococcus lactis , Nisina , Nisina/genética , Nisina/farmacologia , Lactococcus lactis/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genes Bacterianos , Bioengenharia
2.
BMC Microbiol ; 23(1): 100, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055727

RESUMO

Mosquitoes of many species are key disease vectors, killing millions of people each year. Bacillus thuringiensis-based insecticide formulations are largely recognized as among the most effective, ecologically safe, and long-lasting methods of managing insect pests. New B. thuringiensis strains with high mosquito control effectiveness were isolated, identified, genetically defined, and physiologically characterized. Eight B. thuringiensis strains were identified and shown to carry endotoxin-producing genes. Using a scanning electron microscope, results revealed typical crystal forms of various shapes in B. thuringiensis strains. Fourteen cry and cyt genes were found in the strains examined. Although the genome of the B. thuringiensis A4 strain had twelve cry and cyt genes, not all of them were expressed, and only a few protein profiles were observed. The larvicidal activity of the eight B. thuringiensis strains was found to be positive (LC50: 1.4-28.5 g/ml and LC95: 15.3-130.3 g/ml). Bioassays in a laboratory environment demonstrated that preparations containing B. thuringiensis spores and crystals were particularly active to mosquito larvae and adults. These new findings show that the novel preparation containing B. thuringiensis A4 spores and crystals mixture might be used to control larval and adult mosquitoes in a sustainable and ecologically friendly manner.


Assuntos
Bacillus thuringiensis , Culex , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Culex/metabolismo , Larva/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Mosquitos Vetores , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Proteínas Hemolisinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/química
3.
PLoS One ; 17(8): e0272500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921359

RESUMO

In nature, plants interact with a wide range of microorganisms, and most of these microorganisms could induce growth through the activation of important molecular pathways. The current study evaluated whether the endophytic bacterium Bacillus aryabhattai encourages plant growth and the transcriptional changes that might be implicated in this effect. The endophytic bacterium promotes the growth of Arabidopsis and tobacco plants. The transcriptional changes in Arabidopsis plants treated with the bacterium were also identified, and the results showed that various genes, such as cinnamyl alcohol dehydrogenase, apyrase, thioredoxin H8, benzaldehyde dehydrogenase, indoleacetaldoxime dehydratase, berberine bridge enzyme-like and gibberellin-regulated protein, were highly expressed. Also, endophytic bacterial genes, such as arginine decarboxylase, D-hydantoinase, ATP synthase gamma chain and 2-hydroxyhexa-2,4-dienoate hydratase, were activated during the interaction. These findings demonstrate that the expression of novel plant growth-related genes is induced by interaction with the endophytic bacterium B. aryabhattai and that these changes may promote plant growth in sustainable agriculture.


Assuntos
Arabidopsis , Bacillus , Arabidopsis/metabolismo , Bacillus/genética , Bactérias/genética , Desenvolvimento Vegetal/genética , Plantas/genética , Transcriptoma
4.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009897

RESUMO

In a wireless sensor network, the sensing and data transmission for sensors will cause energy depletion, which will lead to the inability to complete the tasks. To solve this problem, wireless rechargeable sensor networks (WRSNs) have been developed to extend the lifetime of the entire network. In WRSNs, a mobile charging robot (MR) is responsible for wireless charging each sensor battery and collecting sensory data from the sensor simultaneously. Thereby, MR needs to traverse along a designed path for all sensors in the WRSNs. In this paper, dual-side charging strategies are proposed for MR traversal planning, which minimize the MR traversal path length, energy consumption, and completion time. Based on MR dual-side charging, neighboring sensors in both sides of a designated path can be wirelessly charged by MR and sensory data sent to MR simultaneously. The constructed path is based on the power diagram according to the remaining power of sensors and distances among sensors in a WRSN. While the power diagram is built, charging strategies with dual-side charging capability are determined accordingly. In addition, a clustering-based approach is proposed to improve minimizing MR moving total distance, saving charging energy and total completion time in a round. Moreover, integrated strategies that apply a clustering-based approach on the dual-side charging strategies are presented in WRSNs. The simulation results show that, no matter with or without clustering, the performances of proposed strategies outperform the baseline strategies in three respects, energy saving, total distance reduced, and completion time reduced for MR in WSRNs.

5.
Front Microbiol ; 12: 692313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248918

RESUMO

The identification and use of endophytic bacteria capable of triggering plant growth is an important aim in sustainable agriculture. In nature, plants live in alliance with multiple plant growth-promoting endophytic microorganisms. In the current study, we isolated and identified a new endophytic bacterium from a wild plant species Glyceria chinensis (Keng). The bacterium was designated as a Bacillus altitudinis strain using 16S rDNA sequencing. The endophytic B. altitudinis had a notable influence on plant growth. The results of our assays revealed that the endophytic B. altitudinis raised the growth of different plant species. Remarkably, we found transcriptional changes in plants treated with the bacterium. Genes such as maturase K, tetratricopeptide repeat-like superfamily protein, LOB domain-containing protein, and BTB/POZ/TAZ domain-containing protein were highly expressed. In addition, we identified for the first time an induction in the endophytic bacterium of the major facilitator superfamily transporter and DNA gyrase subunit B genes during interaction with the plant. These new findings show that endophytic B. altitudinis could be used as a favourable candidate source to enhance plant growth in sustainable agriculture.

6.
Sci Rep ; 11(1): 12182, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108579

RESUMO

Stress caused by pathogens strongly damages plants. Developing products to control plant disease is an important challenge in sustainable agriculture. In this study, a heat-killed endophytic bacterium (HKEB), Bacillus aryabhattai, is used to induce plant defense against fungal and bacterial pathogens, and the main defense pathways used by the HKEB to activate plant defense are revealed. The HKEB induced high protection against different pathogens through the salicylic and jasmonic acid pathways. We report the presence of gentisic acid in the HKEB for the first time. These results show that HKEBs may be a useful tool for the management of plant diseases.


Assuntos
Arabidopsis/metabolismo , Bacillus/fisiologia , Gentisatos/metabolismo , Temperatura Alta , Nicotiana/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bacillus/química , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...